3,817 research outputs found

    A Labor Lawyer\u27s Guide to the Americans with Disabilities Act of 1990*

    Get PDF
    On July 26, 1990, in a joyous ceremony on the south lawn of the White House, President George Bush signed the Americans with Disabilities Act of 1990 lx into la

    Using epigenomic studies in monozygotic twins to improve our understanding of cancer

    No full text
    Cancer is a set of diseases that exhibit not only genetic mutations but also a profoundly distorted epigenetic landscape. Over the last two decades, great advances have been made in identifying these alterations and their importance in the initiation and progression of cancer. Epigenetic changes can be seen from the very early stages in tumorigenesis and dysregulation of the epigenome has an increasingly acknowledged pathogenic role. Epigenomic twin studies have great potential to contribute to our understanding of complex diseases, such as cancer. This is because the use of monozygotic twins discordant for cancer enables epigenetic variation analysis without the confounding influence of the constitutive genetic background, age or cohort effects. It therefore allows the identification of susceptibility loci that may be sensitive to modification by the environment. These studies into cancer etiology will potentially lead to robust epigenetic markers for the detection and risk assessment of cance

    Human-specific CpG 'beacons' identify human-specific prefrontal cortex H3K4me3 chromatin peaks

    Get PDF
    Therefore, CpG-focused comparative sequence analysis can precisely pinpoint chromatin structures that contribute to the human-specific phenotype and further supports an integrated approach in genomic and epigenomic studie

    Anomaly mediated neutrino-photon interactions at finite baryon density

    Full text link
    We propose new physical processes based on the axial vector anomaly and described by the Wess-Zumino-Witten term that couples the photon, Z-boson, and the omega-meson. The interaction takes the form of a pseudo-Chern-Simons term, ϵμνρσωμZνFρσ\sim \epsilon_{\mu\nu\rho\sigma}\omega^\mu Z^\nu F^{\rho\sigma}. This term induces neutrino-photon interactions at finite baryon density via the coupling of the Z-boson to neutrinos. These interactions may be detectable in various laboratory and astrophysical arenas. The new interactions may account for the MiniBooNE excess. They also produce a competitive contribution to neutron star cooling at temperatures >10^9 K. These processes and related axion--photon interactions at finite baryon density appear to be relevant in many astrophysical regimes.Comment: 4 pages, 2 figures; references adde

    Hydrothermal activity lowers trophic diversity in Antarctic sedimented hydrothermal vents

    Get PDF
    Sedimented hydrothermal vents are those in which hydrothermal fluid vents through sediment and are among the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermally active and off-vent areas of the Bransfield Strait (1050–1647 m depth). Microbial composition, biomass and fatty acid signatures varied widely between and within vent and non-vent sites and provided evidence of diverse metabolic activity. Several species showed diverse feeding strategies and occupied different trophic positions in vent and non-vent areas and stable isotope values of consumers were generally not consistent with feeding structure morphology. Niche area and the diversity of microbial fatty acids reflected trends in species diversity and was lowest at the most hydrothermally active site. Faunal utilisation of chemosynthetic activity was relatively limited but was detected at both vent and non-vent sites as evidenced by carbon and sulphur isotopic signatures, suggesting that the hydrothermal activity can affect trophodynamics over a much wider area than previously thought

    Self-Referential Noise and the Synthesis of Three-Dimensional Space

    Get PDF
    Generalising results from Godel and Chaitin in mathematics suggests that self-referential systems contain intrinsic randomness. We argue that this is relevant to modelling the universe and show how three-dimensional space may arise from a non-geometric order-disorder model driven by self-referential noise.Comment: Figure labels correcte

    Exploring Halo Substructure with Giant Stars IV: The Extended Structure of the Ursa Minor Dwarf Spheroidal

    Full text link
    We present a large area photometric survey of the Ursa Minor dSph. We identify UMi giant star candidates extending to ~3 deg from the center of the dSph. Comparison to previous catalogues of stars within the tidal radius of UMi suggests that our photometric luminosity classification is 100% accurate. Over a large fraction of the survey area, blue horizontal branch stars associated with UMi can also be identified. The spatial distribution of both the UMi giant stars and the BHB stars are remarkably similar, and a large fraction of both samples of stars are found outside the tidal radius of UMi. An isodensity contour map of the stars within the tidal radius of UMi reveals two morphological peculiarities: (1) The highest density of dSph stars is offset from the center of symmetry of the outer isodensity contours. (2) The overall shape of the outer contours appear S-shaped. We find that previously determined King profiles with ~50' tidal radii do not fit well the distribution of our UMi stars. A King profile with a larger tidal radius produces a reasonable fit, however a power law with index -3 provides a better fit for radii > 20'. The existence of UMi stars at large distances from the core of the galaxy, the peculiar morphology of the dSph within its tidal radius, and the shape of its surface density profile all suggest that UMi is evolving significantly due to the tidal influence of the Milky Way. However, the photometric data on UMi stars alone does not allow us to determine if the candidate extratidal stars are now unbound or if they remain bound to the dSph within an extended dark matter halo. (Abridged)Comment: accepted by AJ, 32 pages, 15 figures, emulateapj5 styl

    Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. I: Method and a Preliminary Measurement for Fornax

    Full text link
    This article presents and discusses a method for measuring the proper motions of the Galactic dwarf spheroidal galaxies using images taken with the Hubble Space Telescope. The method involves fitting an effective point spread function to the image of a star or quasi-stellar object to determine its centroid with an accuracy of about 0.005 pixel (0.25 milliarcseconds) -- an accuracy sufficient to measure the proper motion of a dwarf spheroidal galaxy using images separated by just a few years. The data consist of images, dithered to reduce the effects of undersampling, taken at multiple epochs with the Space Telescope Imaging Spectrograph or the Wide Field Planetary Camera. The science fields are in the directions of the Carina, Fornax, Sculptor, and Ursa Minor dwarf spheroidal galaxies and each has at least one quasi-stellar object whose identity has been established by other studies. The rate of change with time of the centroids of the stars of the dwarf spheroidal with respect to the centroid of the quasi-stellar object is the proper motion. Four independent preliminary measurements of the proper motion of Fornax for three fields agree within their uncertainties. The weighted average of these measurements is mu_alpha = 49 +- 13 milliarcseconds/century and mu_delta = -59 +- 13 milliarcseconds/century. The Galactocentric velocity derived from the proper motion implies that Fornax is near perigalacticon, may not be bound to the Milky Way, and is not a member of any of the proposed streams of galaxies and globular clusters in the Galactic halo. If Fornax is bound, the Milky Way must have a mass of at least (1.6 +- 0.8) x 10^{12} solar masses.Comment: 4 tables, 16 figures (22 postscript files), 30+ pages. Accepted for publication in AJ. v2: Revised to remove a typo in the abstract and improve the formattin

    A DNA methylation signature in the stress driver gene Fkbp5 indicates a neuropathic component in chronic pain

    Get PDF
    BACKGROUND: Epigenetic changes can bring insight into gene regulatory mechanisms associated with disease pathogenicity, including chronicity and increased vulnerability. To date, we are yet to identify genes sensitive to epigenetic regulation that contribute to the maintenance of chronic pain and with an epigenetic landscape indicative of the susceptibility to persistent pain. Such genes would provide a novel opportunity for better pain management, as their epigenetic profile could be targeted for the treatment of chronic pain or used as an indication of vulnerability for prevention strategies. Here, we investigated the epigenetic profile of the gene Fkbp5 for this potential, using targeted bisulphite sequencing in rodent pre-clinical models of chronic and latent hypersensitive states. RESULTS: The Fkbp5 promoter DNA methylation (DNAm) signature in the CNS was significantly different between models of persistent pain, and there was a significant correlation between CNS and peripheral blood Fkbp5 DNAm, indicating that further exploration of Fkbp5 promoter DNAm as an indicator of chronic pain pathogenic origin is warranted. We also found that maternal separation, which promotes the persistency of inflammatory pain in adulthood, was accompanied by long-lasting reduction in Fkbp5 DNAm, suggesting that Fkbp5 DNAm profile may indicate the increased vulnerability to chronic pain in individuals exposed to trauma in early life. CONCLUSIONS: Overall, our data demonstrate that the Fkbp5 promoter DNAm landscape brings novel insight into the differing pathogenic origins of chronic pain, may be able to stratify patients and predict the susceptibility to chronic pain
    corecore